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ABSTRACT 

With the growing need for elder care, research is 

focusing on robotic assistance at home. Thus, robots 

must navigate in cluttered, domestic, indoor 

environments with the purpose of interacting with a 

person. Here we present a behaviour based navigation 

model enhanced with a low level decision making 

process that allows the robot to approach a human in 

such an environment. The model has been tested on 

simulation and the first results show the effectiveness of 

the Bayesian decision making process. 
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INTRODUCTION 

With the growing need for elder care, research is 

focusing on robotic assistance at home. The goal is to 

develop socially interactive robots that “live” in 

people’s homes and coexists with humans in their daily 

life (Althaus, Ishiguro, Kanda, Miyashita, & 

Christensen, 2004). Thus the movements of the mobile 

platform are a fundamental issue to be addressed. 

Furthermore navigation needs to be robust in order to 

cope with dynamically changing environments and with 

information coming from different sources.  

NAVIGATION MODEL 

The navigation model is derived from the work by 
Althaus et al. (2004) and  Soares, Bicho, Machado 

and Erlhagen (2007) and its formal background is based 

on the theory of nonlinear dynamical systems (Schöner, 

Dose,  & Engels, 1995). A behavior emerges from the 

time evolution of a behavioral variable  that is chosen to 

be the robot heading direction. Multiple behaviors are 

aggragated by means of a weighted sum and their 

coordination is  realized by shaping the value of the 

weights.  

We have defined four elementary behaviors whose 

descriptions are: 

Avoid obstacles: generates a repulsive force that is 

dependent on the detected distance between the robot 

and the obstacle and on the angular location of the 

obstacle respect to the robot.  

Avoid personal space: generates a circular shaped 

repulsive force around the human. The repulsion 

strenght is locally attenuated by the weighting function 

to permit the robot to approach the human. This 

behavior  is in competition with the behavior to 

approach the human. 

Approach a human: generates an attractive force that 

steeres the robot to be at a specified target location 

with respect to the human. 

Allign to the human: generates an attractive force that 

steeres the robot heading direction to allow the robot to 

face the human. 

The defined behaviors have been tested in a Matlab 

simulation environment and the results showed that the 

robot is able to reach the human with the proper 

alignment while avoiding obstacles and respecting the 

human’s personal space. An example of the robot 

trajectory can be seen in Figure 1. The robot turns to 

approach the human in a straight line, but when the 

sensors detect an obstacle (black rectangle) the robot 

circumnavigates the obstacle through dynamic updating 

of its heading direction. After that, the robot turns to 

face the human. 

PERCEPTION MODEL 

The robot target location is determined by the human’s 

pose in the home environment. This information is, in 

our case, provided externally by the smart home 

environment.  

 

Figure 1: Diagram showing the trajectory (dots) of the 

robot (small circle) approaching the human (cross). The 

personal space (big circle) and selected target position 

(cross external to the small circle) are also indicated. 



The information on the human’s location may still 

coincide with an obstacle. So, to make the system 

robust, we enhanced the navigation model with a low 

level decision making process. In other words, we gave 

the robot the freedom to choose where to position itself 

according to its own perception of the environment. The 

problem is formulated as a Bayesian filtering problem 

and it is solved numerically by means of a particle filter. 

The problem consists of estimating the state of a 

dynamical system from noisy sensor measurements. In 

our case the dynamical system is composed of the 

human, the robot and the smart home environment. The 

state to be estimated is the optimal target position [ xt  , 

yt ] of the robot with respect to the human . 

The posterior probability of the system state is first 

initialized according to the a priori knowledge about the 

direction and the distance from which the human likes 

to be addressed (Dautenhahn et al., 2006). Figure 2 

 

Figure 2: Initial probability density of robot’s destination 

for a human located at [90 100]. The initial target location 

is determined by the maximum probability. 

shows how the initial belief  is distributed around the 

human  that is located at [90 100]. The target location is 

chosen to be the point in the space with the highest 

probability (distribution peak).  

 

Figure 3: Final probability density of the robot’s 

destination for a human located at [90 100]. The robot has 

sensed the environment and updated the probability 

accordingly.  The narrowness of the peak indicates the 

certainty of the robot about its destination. 

While the robot is approaching the human, the posterior 

probability is updated according to the robot’s sensor 

measurements and a new position for the target location 

may be selected.  

Figure 3 shows the final probability distribution after 

the robot has sensed the environment around the human. 

The comparison between Figure 2 and Figure 3 shows 

how the belief evolves from the initial broad 

distribution to the narrow final distribution. The 

distribution width indicates the robot’s uncertainty 

about which destination is best to use. This evolution is 

due to the fact that the robot has sensed the environment 

around the human and the environmental context has 

constrained the best location to approach the human to a 

small region (location of the space with the probability 

peak in Figure 3) . 

CONCLUSION 

We built a Bayesian model for approaching a human by 

modelling the human as an attracting target with a 

repelling personal space. We dynamically updated the 

robot’s approach direction and location using its own 

perception model. The simulation results show that the 

perception model increases the system’s robustness 

against erroneous information and constitutes a 

framework for low level decision making in robot 

navigation. 
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x dimension scale 1:5 cm

Initial target location probability density

y dimension scale 1:5 cm
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Final target location probability density
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